A Comparative Study of Real-Valued Negative Selection to Statistical Anomaly Detection Techniques
نویسندگان
چکیده
The (randomized) real-valued negative selection algorithm is an anomaly detection approach, inspired by the negative selection immune system principle. The algorithm was proposed to overcome scaling problems inherent in the hamming shape-space negative selection algorithm. In this paper, we investigate termination behavior of the realvalued negative selection algorithm with variable-sized detectors on an artificial data set. We then undertake an analysis and comparison of the classification performance on the high-dimensional KDD data set of the real-valued negative selection, a real-valued positive selection and statistical anomaly detection techniques. Results reveal that in terms of detection rate, real-valued negative selection with variable-sized detectors is not competitive to statistical anomaly detection techniques on the KDD data set. In addition, we suggest that the termination guarantee of the real-valued negative selection with variable-sized detectors is very sensitive to several parameters.
منابع مشابه
A Study of Artificial Immune Systems Applied to Anomaly
González, Fabio Ph.D. The University of Memphis. May 2003. A Study of Artificial Immune Systems Applied to Anomaly Detection. Major Professor: Dipankar Dasgupta, Ph.D. The main goal of this research is to examine and to improve the anomaly detection function of artificial immune systems, specifically the negative selection algorithm and other self/non-self recognition techniques. This research ...
متن کاملOn the Appropriateness of Negative Selection for Anomaly Detection and Network
English) The immune system is a complex system which protects humans and animals against diseases caused by foreign intruders such as viruses, bacteria and fungi. It appears as if the recognition and protection mechanism of the immune system can lead to the development of novel concepts and techniques for detecting intrusions in computer networks, particularly in the area of anomaly detection. ...
متن کاملA Study of Artificial Immune Systems Applied to Anomaly Detection
González, Fabio Ph.D. The University of Memphis. May 2003. A Study of Artificial Immune Systems Applied to Anomaly Detection. Major Professor: Dipankar Dasgupta, Ph.D. The main goal of this research is to examine and to improve the anomaly detection function of artificial immune systems, specifically the negative selection algorithm and other self/non-self recognition techniques. This research ...
متن کاملOn the appropriateness of negative selection for anomaly detection and network intrusion detection
English) The immune system is a complex system which protects humans and animals against diseases caused by foreign intruders such as viruses, bacteria and fungi. It appears as if the recognition and protection mechanism of the immune system can lead to the development of novel concepts and techniques for detecting intrusions in computer networks, particularly in the area of anomaly detection. ...
متن کاملA Comparative Study of Negative Selection Based Anomaly Detection in Sequence Data
The negative selection algorithm is one of the oldest immuneinspired classification algorithms and was originally intended for anomaly detection tasks in computer security. After initial enthusiasm, performance problems with the algorithm lead many researchers to conclude that negative selection is not a competitive anomaly detection technique. However, in recent years, theoretical work has lea...
متن کامل